Definition of the Derivative

Date \qquad Period \qquad
Use the definition of the derivative to find the derivative of each function with respect to \boldsymbol{x}.

1) $y=2 x+2$
2) $y=x+5$
3) $y=2 x+5$
4) $y=5 x+4$
5) $y=4 x^{2}+4$
6) $y=-3 x^{2}+2$
7) $y=-4 x^{2}+1$
8) $y=x^{2}-5$
9) $f(x)=x^{2}+x-1$
10) $f(x)=4 x^{2}+4 x-3$

Critical thinking question:

11) Look at your answers for problems 1-10. Try to determine a pattern to guess the derivative of $y=2 x^{2}+3 x+7$.
\qquad

Definition of the Derivative

Date \qquad Period \qquad
Use the definition of the derivative to find the derivative of each function with respect to \boldsymbol{x}.

1) $y=2 x+2$

$$
\frac{d y}{d x}=2
$$

2) $y=x+5$

$$
\frac{d y}{d x}=1
$$

3) $y=2 x+5$

$$
\frac{d y}{d x}=2
$$

4) $y=5 x+4$

$$
\frac{d y}{d x}=5
$$

5) $y=4 x^{2}+4$

$$
\frac{d y}{d x}=8 x
$$

6) $y=-3 x^{2}+2$

$$
\frac{d y}{d x}=-6 x
$$

7) $y=-4 x^{2}+1$

$$
\frac{d y}{d x}=-8 x
$$

8) $y=x^{2}-5$

$$
\frac{d y}{d x}=2 x
$$

9) $f(x)=x^{2}+x-1$
$f^{\prime}(x)=2 x+1$
10) $f(x)=4 x^{2}+4 x-3$
$f^{\prime}(x)=8 x+4$

Critical thinking question:

11) Look at your answers for problems 1-10. Try to determine a pattern to guess the derivative of $y=2 x^{2}+3 x+7$.
$\frac{d y}{d x}=4 x+3$ Each term is worked on independently and the new terms are added or subtracted as in the original function. Constants turn to 0s. Exponents for each term with x are decreased by 1. Coefficients are multiplied by the original exponent. This illustrates the sum, constant, and power rules. You will learn them soon.
